1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
use std::fmt;

use memchr::memchr;

use super::{
    FAIL_STATE, ROOT_STATE,
    StateIdx, PatIdx,
    AcAutomaton, Transitions, Match,
};
use super::autiter::Automaton;

/// A complete Aho-Corasick automaton.
///
/// This uses a single transition matrix that permits each input character
/// to move to the next state with a single lookup in the matrix.
///
/// This is as fast as it gets, but it is guaranteed to use a lot of memory.
/// Namely, it will use at least `4 * 256 * #states`, where the number of
/// states is capped at length of all patterns concatenated.
#[derive(Clone)]
pub struct FullAcAutomaton<P> {
    pats: Vec<P>,
    trans: Vec<StateIdx>,  // row-major, where states are rows
    out: Vec<Vec<PatIdx>>, // indexed by StateIdx
    start_bytes: Vec<u8>,
}

impl<P: AsRef<[u8]>> FullAcAutomaton<P> {
    /// Build a new expanded Aho-Corasick automaton from an existing
    /// Aho-Corasick automaton.
    pub fn new<T: Transitions>(ac: AcAutomaton<P, T>) -> FullAcAutomaton<P> {
        let mut fac = FullAcAutomaton {
            pats: vec![],
            trans: vec![FAIL_STATE; 256 * ac.states.len()],
            out: vec![vec![]; ac.states.len()],
            start_bytes: vec![],
        };
        fac.build_matrix(&ac);
        fac.pats = ac.pats;
        fac.start_bytes = ac.start_bytes;
        fac
    }

    fn set(&mut self, si: StateIdx, i: u8, goto: StateIdx) {
        let ns = self.num_states();
        self.trans[i as usize * ns + si as usize] = goto;
    }

    #[inline]
    fn num_states(&self) -> usize {
        self.out.len()
    }
}

impl<P: AsRef<[u8]>> Automaton<P> for FullAcAutomaton<P> {
    #[inline]
    fn next_state(&self, si: StateIdx, i: u8) -> StateIdx {
        self.trans[i as usize * self.num_states() + si as usize]
    }

    #[inline]
    fn get_match(&self, si: StateIdx, outi: usize, texti: usize) -> Match {
        let pati = self.out[si as usize][outi];
        let patlen = self.pats[pati].as_ref().len();
        let start = texti + 1 - patlen;
        Match {
            pati: pati,
            start: start,
            end: start + patlen,
        }
    }

    #[inline]
    fn has_match(&self, si: StateIdx, outi: usize) -> bool {
        outi < self.out[si as usize].len()
    }

    #[inline]
    fn skip_to(&self, si: StateIdx, text: &[u8], at: usize) -> usize {
        if si != ROOT_STATE || !self.is_skippable() {
            return at;
        }
        let b = self.start_bytes[0];
        match memchr(b, &text[at..]) {
            None => text.len(),
            Some(i) => at + i,
        }
    }

    #[inline]
    fn is_skippable(&self) -> bool {
        self.start_bytes.len() == 1
    }

    #[inline]
    fn patterns(&self) -> &[P] {
        &self.pats
    }

    #[inline]
    fn pattern(&self, i: usize) -> &P {
        &self.pats[i]
    }
}

impl<P: AsRef<[u8]>> FullAcAutomaton<P> {
    fn build_matrix<T: Transitions>(&mut self, ac: &AcAutomaton<P, T>) {
        for (si, s) in ac.states.iter().enumerate().skip(1) {
            for b in (0..256).map(|b| b as u8) {
                self.set(si as StateIdx, b, ac.next_state(si as StateIdx, b));
            }
            for &pati in &s.out {
                self.out[si].push(pati);
            }
        }
    }
}

impl<P: AsRef<[u8]> + fmt::Debug> fmt::Debug for FullAcAutomaton<P> {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "FullAcAutomaton({:?})", self.pats)
    }
}