bitflags::bitflags! [] [src]

macro_rules! bitflags {
    ($(#[$attr:meta])* flags $BitFlags:ident: $T:ty {
        $($(#[$Flag_attr:meta])* const $Flag:ident = $value:expr),+
    }) => {
        #[derive(Copy, PartialEq, Eq, Clone, PartialOrd, Ord, Hash)]
        $(#[$attr])*
        pub struct $BitFlags {
            bits: $T,
        }

        $($(#[$Flag_attr])* pub const $Flag: $BitFlags = $BitFlags { bits: $value };)+

        impl ::std::fmt::Debug for $BitFlags {
            fn fmt(&self, f: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {
                // This convoluted approach is to handle #[cfg]-based flag
                // omission correctly. Some of the $Flag variants may not be
                // defined in this module so we create an inner module which
                // defines *all* flags to the value of 0. Afterwards when the
                // glob import variants from the outer module, shadowing all
                // defined variants, leaving only the undefined ones with the
                // bit value of 0.
                #[allow(dead_code)]
                mod dummy {
                    // Now we define the "undefined" versions of the flags.
                    // This way, all the names exist, even if some are #[cfg]ed
                    // out.
                    $(const $Flag: super::$BitFlags = super::$BitFlags { bits: 0 };)+

                    #[inline]
                    pub fn fmt(self_: &super::$BitFlags,
                               f: &mut ::std::fmt::Formatter)
                               -> ::std::fmt::Result {
                        // Now we import the real values for the flags.
                        // Only ones that are #[cfg]ed out will be 0.
                        use super::*;

                        let mut _first = true;
                        $(
                            // $Flag.bits == 0 means that $Flag doesn't exist
                            if $Flag.bits != 0 && self_.contains($Flag) {
                                if !_first {
                                    try!(f.write_str(" | "));
                                }
                                _first = false;
                                try!(f.write_str(stringify!($Flag)));
                            }
                        )+
                        Ok(())
                    }
                }
                dummy::fmt(self, f)
            }
        }

        impl $BitFlags {
            /// Returns an empty set of flags.
            #[inline]
            pub fn empty() -> $BitFlags {
                $BitFlags { bits: 0 }
            }

            /// Returns the set containing all flags.
            #[inline]
            pub fn all() -> $BitFlags {
                // See above `dummy` module for why this approach is taken.
                #[allow(dead_code)]
                mod dummy {
                    $(const $Flag: super::$BitFlags = super::$BitFlags { bits: 0 };)+

                    #[inline]
                    pub fn all() -> super::$BitFlags {
                        use super::*;
                        $BitFlags { bits: $($Flag.bits)|+ }
                    }
                }
                dummy::all()
            }

            /// Returns the raw value of the flags currently stored.
            #[inline]
            pub fn bits(&self) -> $T {
                self.bits
            }

            /// Convert from underlying bit representation, unless that
            /// representation contains bits that do not correspond to a flag.
            #[inline]
            pub fn from_bits(bits: $T) -> ::std::option::Option<$BitFlags> {
                if (bits & !$BitFlags::all().bits()) != 0 {
                    ::std::option::Option::None
                } else {
                    ::std::option::Option::Some($BitFlags { bits: bits })
                }
            }

            /// Convert from underlying bit representation, dropping any bits
            /// that do not correspond to flags.
            #[inline]
            pub fn from_bits_truncate(bits: $T) -> $BitFlags {
                $BitFlags { bits: bits } & $BitFlags::all()
            }

            /// Returns `true` if no flags are currently stored.
            #[inline]
            pub fn is_empty(&self) -> bool {
                *self == $BitFlags::empty()
            }

            /// Returns `true` if all flags are currently set.
            #[inline]
            pub fn is_all(&self) -> bool {
                *self == $BitFlags::all()
            }

            /// Returns `true` if there are flags common to both `self` and `other`.
            #[inline]
            pub fn intersects(&self, other: $BitFlags) -> bool {
                !(*self & other).is_empty()
            }

            /// Returns `true` all of the flags in `other` are contained within `self`.
            #[inline]
            pub fn contains(&self, other: $BitFlags) -> bool {
                (*self & other) == other
            }

            /// Inserts the specified flags in-place.
            #[inline]
            pub fn insert(&mut self, other: $BitFlags) {
                self.bits |= other.bits;
            }

            /// Removes the specified flags in-place.
            #[inline]
            pub fn remove(&mut self, other: $BitFlags) {
                self.bits &= !other.bits;
            }

            /// Toggles the specified flags in-place.
            #[inline]
            pub fn toggle(&mut self, other: $BitFlags) {
                self.bits ^= other.bits;
            }
        }

        impl ::std::ops::BitOr for $BitFlags {
            type Output = $BitFlags;

            /// Returns the union of the two sets of flags.
            #[inline]
            fn bitor(self, other: $BitFlags) -> $BitFlags {
                $BitFlags { bits: self.bits | other.bits }
            }
        }

        impl ::std::ops::BitXor for $BitFlags {
            type Output = $BitFlags;

            /// Returns the left flags, but with all the right flags toggled.
            #[inline]
            fn bitxor(self, other: $BitFlags) -> $BitFlags {
                $BitFlags { bits: self.bits ^ other.bits }
            }
        }

        impl ::std::ops::BitAnd for $BitFlags {
            type Output = $BitFlags;

            /// Returns the intersection between the two sets of flags.
            #[inline]
            fn bitand(self, other: $BitFlags) -> $BitFlags {
                $BitFlags { bits: self.bits & other.bits }
            }
        }

        impl ::std::ops::Sub for $BitFlags {
            type Output = $BitFlags;

            /// Returns the set difference of the two sets of flags.
            #[inline]
            fn sub(self, other: $BitFlags) -> $BitFlags {
                $BitFlags { bits: self.bits & !other.bits }
            }
        }

        impl ::std::ops::Not for $BitFlags {
            type Output = $BitFlags;

            /// Returns the complement of this set of flags.
            #[inline]
            fn not(self) -> $BitFlags {
                $BitFlags { bits: !self.bits } & $BitFlags::all()
            }
        }

        impl ::std::iter::FromIterator<$BitFlags> for $BitFlags {
            fn from_iter<T: ::std::iter::IntoIterator<Item=$BitFlags>>(iterator: T) -> $BitFlags {
                let mut result = Self::empty();
                for item in iterator {
                    result.insert(item)
                }
                result
            }
        }
    };
    ($(#[$attr:meta])* flags $BitFlags:ident: $T:ty {
        $($(#[$Flag_attr:meta])* const $Flag:ident = $value:expr),+,
    }) => {
        bitflags! {
            $(#[$attr])*
            flags $BitFlags: $T {
                $($(#[$Flag_attr])* const $Flag = $value),+
            }
        }
    };
}

The bitflags! macro generates a struct that holds a set of C-style bitmask flags. It is useful for creating typesafe wrappers for C APIs.

The flags should only be defined for integer types, otherwise unexpected type errors may occur at compile time.

Example

#[macro_use]
extern crate bitflags;

bitflags! {
    flags Flags: u32 {
        const FLAG_A       = 0b00000001,
        const FLAG_B       = 0b00000010,
        const FLAG_C       = 0b00000100,
        const FLAG_ABC     = FLAG_A.bits
                           | FLAG_B.bits
                           | FLAG_C.bits,
    }
}

fn main() {
    let e1 = FLAG_A | FLAG_C;
    let e2 = FLAG_B | FLAG_C;
    assert!((e1 | e2) == FLAG_ABC);   // union
    assert!((e1 & e2) == FLAG_C);     // intersection
    assert!((e1 - e2) == FLAG_A);     // set difference
    assert!(!e2 == FLAG_A);           // set complement
}

The generated structs can also be extended with type and trait implementations:

#[macro_use]
extern crate bitflags;

use std::fmt;

bitflags! {
    flags Flags: u32 {
        const FLAG_A   = 0b00000001,
        const FLAG_B   = 0b00000010,
    }
}

impl Flags {
    pub fn clear(&mut self) {
        self.bits = 0;  // The `bits` field can be accessed from within the
                        // same module where the `bitflags!` macro was invoked.
    }
}

impl fmt::Display for Flags {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "hi!")
    }
}

fn main() {
    let mut flags = FLAG_A | FLAG_B;
    flags.clear();
    assert!(flags.is_empty());
    assert_eq!(format!("{}", flags), "hi!");
    assert_eq!(format!("{:?}", FLAG_A | FLAG_B), "FLAG_A | FLAG_B");
    assert_eq!(format!("{:?}", FLAG_B), "FLAG_B");
}

Attributes

Attributes can be attached to the generated struct by placing them before the flags keyword.

Trait implementations

The Copy, Clone, PartialEq, Eq, PartialOrd, Ord and Hash traits automatically derived for the struct using the derive attribute. Additional traits can be derived by providing an explicit derive attribute on flags.

The FromIterator trait is implemented for the struct, too, calculating the union of the instances of the struct iterated over.

The Debug trait is also implemented by displaying the bits value of the internal struct.

Operators

The following operator traits are implemented for the generated struct:

Methods

The following methods are defined for the generated struct: